Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Burns ; (6): 59-64, 2023.
Article in Chinese | WPRIM | ID: wpr-971150

ABSTRACT

Objective: To investigate the scientificity and feasibility of the ten-fold rehydration formula for emergency resuscitation of pediatric patients after extensive burns. Methods: A retrospective observational study was conducted. The total burn area of 30%-100% total body surface area (TBSA) and body weight of 6-50 kg in 433 pediatric patients (250 males and 183 females, aged 3 months to 14 years) with extensive burns who met the inclusion criteria and admitted to the burn departments of 72 Class A tertiary hospitals were collected. The 6 319 pairs of simulated data were constructed after pairing each body weight of 6-50 kg (programmed in steps of 0.5 kg) and each total burn area of 30%-100% TBSA (programmed in steps of 1%TBSA). They were put into three accepted pediatric rehydration formulae, namely the commonly used domestic pediatric rehydration formula for burn patients (hereinafter referred to as the domestic rehydration formula), the Galveston formula, and the Cincinnati formula, and the two rehydration formulae for pediatric emergency, namely the simplified resuscitation formula for emergency care of patients with extensive burns proposed by the World Health Organization's Technical Working Group on Burns (TWGB, hereinafter referred to as the TWGB formula) and the pediatric ten-fold rehydration formula proposed by the author of this article--rehydration rate (mL/h)=body weight (kg) × 10 (mL·kg-1·h-1) to calculate the rehydration rate within 8 h post injury (hereinafter referred to as the rehydration rate). The range of the results of the 3 accepted pediatric rehydration formulae ±20% were regarded as the reasonable rehydration rate, and the accuracy rates of rehydration rate calculated using the two pediatric emergency rehydration formulae were compared. Using the maximum burn areas (55% and 85% TBSA) corresponding to the reasonable rehydration rate calculated by the pediatric ten-fold rehydration formula at the body weight of 6 and 50 kg respectively, the total burn area of 30% to 100% TBSA was divided into 3 segments and the accuracy rates of the rehydration rate calculated using the 2 pediatric emergency rehydration formulae in each segment were compared. When neither of the rehydration rates calculated by the 2 pediatric emergency rehydration formulae was reasonable, the differences between the two rehydration rates were compared. The distribution of 433 pediatric patients in the 3 previous total burn area segments was counted and the accuracy rates of the rehydration rate calculated using the 2 pediatric emergency rehydration formulae were calculated and compared. Data were statistically analyzed with McNemar test. Results: Substitution of 6 319 pairs of simulated data showed that the accuracy rates of the rehydration rates calculated by the pediatric ten-fold rehydration formula was 73.92% (4 671/6 319), which was significantly higher than 4.02% (254/6 319) of the TWGB formula (χ2=6 490.88,P<0.05). When the total burn area was 30%-55% and 56%-85% TBSA, the accuracy rates of the rehydration rates calculated by the pediatric ten-fold rehydration formula were 100% (2 314/2 314) and 88.28% (2 357/2 670), respectively, which were significantly higher than 10.98% (254/2 314) and 0 (0/2 670) of the TWGB formula (with χ2 values of 3 712.49 and 4 227.97, respectively, P<0.05); when the total burn area was 86%-100% TBSA, the accuracy rates of the rehydration rates calculated by the pediatric ten-fold rehydration formula and the TWGB formula were 0 (0/1 335). When the rehydration rates calculated by the 2 pediatric emergency rehydration formulae were unreasonable, the rehydration rates calculated by the pediatric ten-fold rehydration formula were all higher than those of the TWGB formula. There were 93.07% (403/433), 5.77% (25/433), and 1.15% (5/433) patients in the 433 pediatric patients had total burn area of 30%-55%, 56%-85%, and 86%-100% TBSA, respectively, and the accuracy rate of the rehydration rate calculated using the pediatric ten-fold rehydration formula was 97.69% (423/433), which was significantly higher than 0 (0/433) of the TWGB formula (χ2=826.90, P<0.05). Conclusions: The application of the pediatric ten-fold rehydration formula to estimate the rehydration rate of pediatric patients after extensive burns is more accurate and convenient, superior to the TWGB formula, suitable for application by front-line healthcare workers that are not specialized in burns in pre-admission rescue of pediatric patients with extensive burns, and is worthy of promotion.


Subject(s)
Male , Female , Humans , Child , Burns/therapy , Hospitalization , Resuscitation , Fluid Therapy/methods , Body Surface Area , Retrospective Studies
2.
Chinese Journal of Burns ; (6): 236-241, 2022.
Article in Chinese | WPRIM | ID: wpr-936000

ABSTRACT

Objective: To explore the scientificity and feasibility of the tenfold rehydration formula for emergency resuscitation of adult patients after extensive burns. Methods: A retrospective observational study was conducted. The total burn area (30%-100% total body surface area (TBSA)) and body weight (45-135 kg) of 170 adult patients (135 males and 35 females, aged (42±14) years) with extensive burns admitted to the Fourth Medical Center of PLA General Hospital from December 2016 to December 2019 were collected. The 6 461 pairs of simulated data obtained after pairing each body weight in 45 to 135 kg (programmed in steps of 1 kg) with each area in 30% to 100% TBSA (programmed in steps of 1%TBSA) were plugged into four recognized rehydration formulas--Parkland's formula, Brooke's formula, the 304th PLA Hospital formula, and the Third Military Medical University formula and two emergency rehydration formulas--the simplified first aid resuscitation plan for extensive burn patients proposed by the World Health Organization's Technical Working Group on Burns (TWGB, hereinafter referred to as the TWGB formula) and the tenfold rehydration formula proposed by the author of this article to calculate the rehydration rate within 8 hours after injury (hereinafter referred to as the rehydration rate), with results being displayed by a programming step of 10%TBSA for the total burn area. Taking the calculation results of four recognized rehydration formulas as the reasonable rehydration rate, the accuracy of rehydration rates calculated by two emergency rehydration formulas were calculated and compared. The body weight of 45-135 kg was divided into three segments by the results of maximum body weight at a reasonable rehydration rate calculated by the tenfold rehydration formula when the total burn area was 30% and 100% TBSA, respectively. The accuracy of rehydration rate calculated by two emergency rehydration formulas in each body weight segment was compared. When the rehydration rates calculated by two emergency rehydration formulas were unreasonable, the differences in rehydration rates between the two were compared. Statistical distribution of the aforementioned three body weight segments in the aforementioned 170 patients was counted. Using the total burn area and body weight data of the aforementioned 170 patients, the accuracy of rehydration rate calculated by two emergency rehydration formulas was calculated and compared as before. Data were statistically analyzed with McNemar test. Results: When the total burn area was 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% TBSA, respectively, and the body weight was 45-135 kg, the rehydration rates calculated by two emergency rehydration formulas did not exceed the maximum of the calculated results of four recognized rehydration formulas; the rehydration rate calculated by the TWGB formula did not change accordingly with total burn area, while the rehydration rate calculated by the tenfold rehydration formula did not change accordingly with body weight. Substituting 6 461 pairs of simulated data showed that the accuracy of rehydration rate calculated by the tenfold rehydration formula was 43.09% (2 784/6 461), which was significantly higher than 2.07% (134/6 461) of the TWGB formula, χ2=2 404.80, P<0.01. When the body weights were 45-62 kg and 63-93 kg, the accuracy rates of rehydration rate calculated by the tenfold rehydration formula were 100% (1 278/1 278) and 68.42% (1 506/2 201), respectively, which were significantly higher than 0 (0/1 278) and 0.05% (1/2 201) of the TWGB formula, χ2=1 276.00, 1 501.01, P<0.01; when the body weight was 94-135 kg, the accuracy rate of rehydration rate calculated by the tenfold rehydration formula was 0 (0/2 982), which was significantly lower than 4.46% (133/2 982) of the TWGB formula, χ2=131.01, P<0.01. When the rehydration rates calculated by two emergency rehydration formulas were both unreasonable, the rehydration rate calculated by the tenfold rehydration formula was greater than that calculated by the TWGB formula in most cases, accounting for 79.3% (2 808/3 543). Among the 170 patients, the proportions of those weighing 45-62, 63-93, and 94-135 kg were 25.29% (43/170), 65.88% (112/170), and 8.82% (15/170), respectively. Among the 170 patients, the accuracy rate of rehydration rate calculated by the tenfold rehydration formula was 69.41% (118/170), which was significantly higher than 3.53% (6/170) of the TWGB formula, χ2=99.36, P<0.01. Conclusions: Applying the tenfold rehydration formula to calculate the emergency rehydration rate in adults after extensive burns is simpler than four recognized rehydration formulas, and is superior to the TWGB formula. The tenfold rehydration formula is suitable for the front-line medical staffs that are not specialized in burns in pre-admission rescue of adult patients with extensive burns, which is worth popularizing.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Body Surface Area , Burns/therapy , Fluid Therapy/methods , Resuscitation/methods , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL